MARS EXPRESS
MISSION OVERVIEW:
Status: In operation around Mars
Objective
To study the martian atmosphere and climate, the planet’s structure, its mineralogy and its geology, and to search for traces of water.
To study the martian atmosphere and climate, the planet’s structure, its mineralogy and its geology, and to search for traces of water.
Mission
Mars Express is Europe’s first mission to the Red Planet. It carries seven instruments and deployed a lander, Beagle 2. The lander was lost during its attempt to reach the planet’s surface but the orbiter continues its highly successful on-going global investigation of Mars and its two moons, Phobos and Deimos.
Mars Express is Europe’s first mission to the Red Planet. It carries seven instruments and deployed a lander, Beagle 2. The lander was lost during its attempt to reach the planet’s surface but the orbiter continues its highly successful on-going global investigation of Mars and its two moons, Phobos and Deimos.
What's special?
Mars has always been a source of intrigue and fascination. It is currently the only planet in the Solar System on which there is a strong possibility of finding the evidence of past life, perhaps even existing organisms. It is also a prime candidate for future manned exploration.
Since beginning science operations in 2004, the mission has already provided countless breath-taking views of Mars in three dimensions. It has traced the history of water across the globe, demonstrating that Mars once harboured environmental conditions that may have been suitable for life. Key discoveries include the presence of minerals that form only in the presence of water, the detection of water-ice deposits underground, and evidence to suggest volcanism on Mars may have persisted until recent times.
The mission has also provided the most complete map of the chemical composition of the atmosphere, indicating the possible presence of methane, which on Earth is attributed to active volcanism and biochemical processes.
Mars Express has also studied Mars’ innermost moon Phobos in unprecedented detail.
The spacecraft has also provided relay communication services between the Earth and the NASA rovers on the surface, so forming a centrepiece of the international effort in exploring Mars.
Mars has always been a source of intrigue and fascination. It is currently the only planet in the Solar System on which there is a strong possibility of finding the evidence of past life, perhaps even existing organisms. It is also a prime candidate for future manned exploration.
Since beginning science operations in 2004, the mission has already provided countless breath-taking views of Mars in three dimensions. It has traced the history of water across the globe, demonstrating that Mars once harboured environmental conditions that may have been suitable for life. Key discoveries include the presence of minerals that form only in the presence of water, the detection of water-ice deposits underground, and evidence to suggest volcanism on Mars may have persisted until recent times.
The mission has also provided the most complete map of the chemical composition of the atmosphere, indicating the possible presence of methane, which on Earth is attributed to active volcanism and biochemical processes.
Mars Express has also studied Mars’ innermost moon Phobos in unprecedented detail.
The spacecraft has also provided relay communication services between the Earth and the NASA rovers on the surface, so forming a centrepiece of the international effort in exploring Mars.
Spacecraft
Mars Express hosts seven scientific instruments. HRSC (High Resolution Stereo Camera, OMEGA (Visible and Infrared Mineralogical Mapping Spectrometer) and MARSIS (Sub-surface Sounding Radar Altimeter) are used to image and study the surface and subsurface. For atmospheric and plasma studies there is PFS (Planetary Fourier Spectrometer), SPICAM (Ultraviolet and Infrared Atmospheric Spectrometer) and ASPERA (Energetic Neutral Atoms Analyser). OMEGA is also used to the study the atmosphere, and plasma is also studied with MARSIS. A radio link to convey data between the spacecraft and Earth is provided by MaRS, the Mars Radio Science Experiment, and used to study the gravity of Mars, the atmosphere and ionosphere, surface roughness and solar corona.
Electrical power is provided by the spacecraft’s solar panels, which are mounted on a rotating drive mechanism, which tilts them forwards and backwards to catch the most sunlight. When the spacecraft's view of the Sun is obscured during a solar eclipse, an innovative lithium-ion battery, previously charged up by the solar panels, takes over.
Mars Express hosts seven scientific instruments. HRSC (High Resolution Stereo Camera, OMEGA (Visible and Infrared Mineralogical Mapping Spectrometer) and MARSIS (Sub-surface Sounding Radar Altimeter) are used to image and study the surface and subsurface. For atmospheric and plasma studies there is PFS (Planetary Fourier Spectrometer), SPICAM (Ultraviolet and Infrared Atmospheric Spectrometer) and ASPERA (Energetic Neutral Atoms Analyser). OMEGA is also used to the study the atmosphere, and plasma is also studied with MARSIS. A radio link to convey data between the spacecraft and Earth is provided by MaRS, the Mars Radio Science Experiment, and used to study the gravity of Mars, the atmosphere and ionosphere, surface roughness and solar corona.
Electrical power is provided by the spacecraft’s solar panels, which are mounted on a rotating drive mechanism, which tilts them forwards and backwards to catch the most sunlight. When the spacecraft's view of the Sun is obscured during a solar eclipse, an innovative lithium-ion battery, previously charged up by the solar panels, takes over.
Journey
Mars Express launched from the Baikonur launch pad in Kazakhstan on a Soyuz-Fregat launcher on 2 June 2003.
One month before arriving at Mars, preparations began for the separation of the Beagle 2 lander. Beagle 2 was released on 19 December 2003, just six days before Mars Express went into orbit around the Red Planet.
The rocky ride through the Martian atmosphere to the surface should have taken no longer than ten minutes. The NASA Mars Odyssey orbiter, several Earth-based telescopes and Mars Express itself all tried to make contact with Beagle 2; however no signal was received. The Beagle 2 Management Board met in London on 6 February 2004 and, following an assessment of the situation, declared Beagle 2 lost.
Mars Express successfully entered orbit around Mars on 25 December 2003.
Mars Express launched from the Baikonur launch pad in Kazakhstan on a Soyuz-Fregat launcher on 2 June 2003.
One month before arriving at Mars, preparations began for the separation of the Beagle 2 lander. Beagle 2 was released on 19 December 2003, just six days before Mars Express went into orbit around the Red Planet.
The rocky ride through the Martian atmosphere to the surface should have taken no longer than ten minutes. The NASA Mars Odyssey orbiter, several Earth-based telescopes and Mars Express itself all tried to make contact with Beagle 2; however no signal was received. The Beagle 2 Management Board met in London on 6 February 2004 and, following an assessment of the situation, declared Beagle 2 lost.
Mars Express successfully entered orbit around Mars on 25 December 2003.
History
Mars Express is so called because it was built and launched in record time and at a much lower cost than previous, similar missions into outer space. The experience gained on Mars Express led to the Venus Express mission.
The relatively low cost of the mission was achieved through new and innovative approaches in the working relationship between ESA, industry, national agencies and the scientific community, and through the reuse of equipment developed for ESA’s Rosetta mission. Some of the scientific instruments have a heritage from the Russian Mars 1996 mission.
Mars Express is so called because it was built and launched in record time and at a much lower cost than previous, similar missions into outer space. The experience gained on Mars Express led to the Venus Express mission.
The relatively low cost of the mission was achieved through new and innovative approaches in the working relationship between ESA, industry, national agencies and the scientific community, and through the reuse of equipment developed for ESA’s Rosetta mission. Some of the scientific instruments have a heritage from the Russian Mars 1996 mission.
Partnerships
Astrium SAS of Toulouse, France, was the prime contractor for Mars Express. The Soyuz-Fregat launcher was provided by Starsem, which is jointly owned by Arianespace, Aerospatiale, the Russian Aviation and Space Agency and the Samara Space Centre.
DESCRIPTION ABOUT MARS EXPRESS:
Mars Express – ESA's mission to the Red Planet – was launched in 2003,
marking the start of a new era for Europe in planetary exploration. Mars
Express also marked the start of a cost-effective and innovative way of
organising the teams and ground systems that comprise European space
missions into the 'mission family' concept.
Mars Express shares a great deal of commonality with Venus Express and
Rosetta in terms of the spacecraft platform, several of the instruments
and the ground segment. Due to this commonality, the spacecraft was
built and launched in record time and at a much lower cost than
previous, similar missions to deep-space destinations, and is now being
operated in coordination with Venus Express to rationalise resources.
The mission's main objective is to search for sub-surface water and
deploy a lander onto the Martian surface. Seven scientific instruments
on board the orbiter are performing a series of remote-sensing
observations designed to shed new light on the Martian atmosphere, the
planet's structure, geology and composition.
The lander, called Beagle 2 after the ship in which Charles Darwin set
sail to explore unchartered areas of the Earth in 1831, was to be used
to study the geology, mineral and chemical composition of the landing
site, search for life signatures, and study the weather and climate.
Beagle 2 was lost upon landing, five days after separation from Mars
Express. In 2015, it was announced that the Beagle-2 lander had been imaged on the surface by a NASA orbiter.
The Flight Control Team:
The Flight Control Team (FCT) operates Mars Express from a combined
Dedicated Control Room (co-located with the DCR for Venus Express and
Rosetta) located at ESOC, Darmstadt, Germany. Spacecraft Operations
Manager (SOM) Michel Denis oversees a team of 15, including spacecraft
operations engineers, mission planners and spacecraft controllers.
Additional experts from ESOC support the mission with specialised
knowledge in several areas, including flight dynamics, software support
and ground stations.Michel Denis joined ESA in 1992 as a flight control team engineer for
Meteosat; he later worked on Cluster, Huygens and XMM-Newton.
Mission Operations Overview:
Mars Express was launched on 2 June 2003 at 17:45 UT by a Soyuz-Fregat
launcher from the Baikonur Cosmodrome in Kazakhstan; at that time of
year, the positions of the two planets made for the shortest possible
route, a condition that occurs once every 26 months.After launch and separation of the various stages, the spacecraft was
placed into a parking orbit following an initial firing of the Fregat
stage. One hour and thirty-two minutes after launch, the Fregat stage
was re-ignited, directing the spacecraft into interplanetary space and
the start of a 400-million-km voyage.
The cruise phase
Once in interplanetary cruise, the satellite's first task was to steady
itself by locking onto the Sun using a Sun sensor. Then the solar arrays
deployed and a message was sent back to ESOC with information on the
state of the instruments and on-board systems after the vibrations of
launch through Earth's atmosphere. Contact with Earth was made via the
omni-directional Low Gain Antenna (LGA), while Mars Express was still
close to home, and via the directional High Gain Antenna (HGA) at larger
distances from Earth.
In order to avoid having the discarded Fregat upper stage also end up on
Mars, it was decided to off-target the launcher slightly; thus Mars
Express was not yet headed along the correct trajectory. Two days and
600 000 km later, therefore, ground control at ESOC sent a message to
Mars Express to conduct a small thruster burn to offset its trajectory
in a direction closer to Mars. All it took was a burn of the small
on-board thrusters for a few minutes to produce the desired effect; the
Fregat upper stage, meanwhile, continued on into space.
(This strategy was due to the fact that Mars Express, should have it
failed later on, had to respect the Interplanetary Protection
Requirements set by the Committee on Space Research Cospar,
and not impact Mars. Subsequent trajectory correction manoeuvres
performed over the cruise progressively re-targeted the spacecraft until
two months before arrival when it was finally put onto a collision
course with the Red Planet.)
At that point, Mars Express was hurtling through interplanetary space
with an absolute velocity of 116 800 km per hour and a velocity relative
to Earth of 10 800 km per hour.
For the first month, detailed checks of each payload instrument were
carried out before switching them off for this phase of the mission. In
principle, Operations entered a routine housekeeping phase with minimal
contact with ESOC, just sufficient to obtain daily health checks and
initiate minor course corrections. But the cruise phase for a brand-new
spacecraft, the first of its family to be launched, turned out to be a
busier period than originally envisaged.
Spacecraft Operations Manager Denis recalls that Mars Express
experienced numerous challenges during initial operations and the cruise
to Mars. "On rare occasions, a lot of effort is invested by scientists
and engineers involved in MEX to prepare a special observation or
operational improvement, but it only partly works because of a trivial
issue due to a spacecraft hiccough, a human mistake – the best processes
cannot fully avoid them – or an environmental issue like a solar
flare," he says.
Nonetheless, the team guided the spacecraft successfully to its remote
destination, and at two points along the way, the HRSC (High Resolution
Stereo Camera) was activated to capture images of the Earth and Moon and
then Mars – from a distance of just 5.5 million km.
Beagle 2 release
One month before arrival, in November 2003, preparations began for the
separation of the Beagle 2 lander. Once again, the spacecraft's small
thrusters would be fired to put Mars Express onto a trajectory that
would allow Beagle 2, which has no propulsion of its own, to enter the
Martian atmosphere and attain the correct landing site on the surface.
At 08:31 UT, 19 December 2003, the pyrotechnic mechanisms on Mars
Express were activated to release the Beagle probe toward the surface of
the Red Planet. This operation took place as late as possible to give
scientists the best possible chance of calculating the landing site.
The first radio contact with Beagle 2 was expected shortly after the
scheduled landing time but no signal was received. Many attempts were
made to establish contact over the following days and weeks, but without
result. By early February 2004, it became clear that there was no
prospect of communicating with Beagle 2 and a joint ESA/UK enquiry was
established to investigate the circumstances and determine possible
reasons for the loss of Beagle 2. In 2015, it was announced that the
Beagle-2 lander had been imaged on the surface by a NASA orbiter.
Orbit insertion
At the same time that Beagle 2 was scheduled to reach the Mars surface,
the spacecraft fired its main engine for the first time since launch to
initiate the critical orbit insertion manoeuvre.
An engine burn lasting 37 minutes was required to place the spacecraft
into a highly elliptical orbit several hundreds of thousand kilometres
above the surface of the planet at apocentre. During the days following
the initial capture orbit, the orbital trajectory was gradually
corrected to bring it closer to the operational scientific orbit.On 30 December 2003, a major engine firing brought the spacecraft into a
polar orbit. Through January 2004, a series of manoeuvres progressively
reduced the maximum distance to the planet and positioned the
spacecraft into a polar orbit with a pericentre of 300 km, an apocentre
10 000 km, and an inclination of 86°.The spacecraft has since performed fully as planned, and has become one
of ESA's most successful missions ever. Full details of the mission's
numerous scientific discoveries are published at ESA's dedicated Mars Express website.
Ground Segment:
During each orbit, Mars Express spends some time turned toward the
planet for instrument observations and some time turned toward Earth for
communications with ground stations, similar to the operational concept
behind sister spacecraft Venus Express.Data collected by the orbiter instruments are transmitted to New Norcia
at a rate of up to 230 kbps. Between 1 and 5 Gbits of scientific data
are downlinked from the spacecraft to Earth every day. From the ground
station, data are transferred to ESOC in Darmstadt, Germany, which adds
spacecraft attitude and orbital data, and then retransmits the data to
the various instrument's principal investigators (PI) for scientific
processing and analysis.
After about six months, all processed data are sent to ESA's European
Space Astronomy Centre (ESAC), Spain, for storage in a publicly
available Mars Express science data archive.Information on the health and position of the spacecraft is included in a
separate data stream. The Mars Express operations team at ESOC use this
information, together with the forthcoming operational needs of the
instruments, to work out new commands to instruct the spacecraft how to
behave over the coming months. The new commands are uplinked via any
ground station in order to keep a stack of several days' worth of
commands pre-programmed in the on-board schedule.
The Platform and Payload:
The Mars Express spacecraft and its instruments represent a truly
international endeavour - a stereoscopic camera from Germany, a
mineralogical mapping device from France and an atmospheric sounder from
Italy. The radar instrument, to probe for water at depths of several
kilometres below the surface, was built jointly between Italy and NASA's
JPL (Jet Propulsion Laboratory), in California, USA. The Beagle 2
landing craft was designed and built in the UK.
Mars Express is a cube-shaped spacecraft with two solar panel wings
extending from opposite sides. The 1123 kg launch mass includes 113 kg
of payload, the 60 kg lander, and 457 kg of propellant. The main body is
1.5 m x 1.8 m x 1.4 m in size, with an aluminium honeycomb structure
covered by an aluminium skin. The solar panels measure about 12 m
tip-to-tip. Two 20m-long wire dipole antennas extend from opposite side
faces perpendicular to the solar panels as part of the radar sounder.
Instrument |
Name |
HRSC |
High Resolution Stereo Camera - high-resolution surface imaging |
OMEGA |
Visible and Infrared Mineralogical Mapping Spectrometer - determine surface composition and evolution processes |
SPICAM |
Ultraviolet and Infrared Mars Atmospheric Spectrometer - determine composition of the atmosphere |
PFS |
Planetary Fourier Spectrometer - study the atmospheric composition and circulation |
MARSIS |
Sub-Surface Sounding Radar Altimeter - search for subsurface water |
ASPERA |
Energetic Neutron Atoms Analyser - how the solar wind erodes the Martian atmosphere |
MaRS |
Radio Science Experiment - sounding of the internal structure, atmosphere and environment |
Lander (Beagle 2) |
Geochemistry and exobiology (lost) |
0 comments:
Post a Comment